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Using the process of zone contraction and its inverse, zone extension, the

179372 contraction types of parallelohedra in E5 were derived from the 84

combinatorial types of relatively or totally zone-contracted parallelohedra.

1. Introduction

The concept of translation lattices to explain the regular shape

of crystals has been well established in the ®eld of crystal-

lography since the time of HauÈ y (1774±1822). The crystal-

lographer Fedorov (1893) initialized a systematic investigation

of the topological properties of translation lattices. In 1885,

Fedorov (1885) described the ®ve combinatorial types of

parallelohedra in Euclidean space E3, that is convex poly-

hedra, congruent copies of which tile space facet-to-facet and

in parallel position. Minkowski (1897) proved that, for a

convex body to admit a facet-to-facet tiling by translation, it

must be a centrosymmetric polytope with centrosymmetric

facets. Venkov (1954), and independently McMullen (1980),

achieved the complete characterization of parallelohedra in

Ed by proving that each belt has four or six �dÿ 2� faces. A

parallelohedron is called primitive if, in its lattice tiling, in each

vertex, exactly d� 1 adjacent parallelohedra meet. VoronoõÈ

(1908a,b) investigated parallelohedra in higher dimensions

and he conjectured that each parallelohedron is af®nely

equivalent to a Dirichlet domain of some translation lattice.

He proved the conjecture for the primitive parallelohedra. He

also derived the three combinatorial types of primitive

parallelohedra in E4. Delaunay (1929a,b) determined 51

combinatorial types of parallelohedra in E4 and the one he

missed was discovered by SÆ togrin (1973). In recent years, the

determination of parallelohedra in E5 was attacked. Bara-

novskii & RysÏkov (1973) determined 221 combinatorial types

of primitive parallelohedra. The complete list of the 222

combinatorial types of primitive parallelohedra was ®nally

reported in 1998 (Engel, 1998), and it was shown that Voro-

noõÈ's conjecture holds for dimension d � 5.

For dimensions d< 5, the combinatorial types of paral-

lelohedra coincide with the contraction types and it was

realized that, beginning with dimension d � 5, the classi®ca-

tion into contraction types is a re®nement of the classi®cation

into combinatorial types (precise de®nitions of the classi®ca-

tion schemes used will be given in x4).

In Engel (1988), the concept of a maximal parallelohedron

was introduced that allows the derivation of its complete zone-

contraction lattice and the problem of ®nding all maximal

parallelohedra was raised. A partial solution was given by

Erdahl & RysÏkov (1994) and Erdahl (1998), who determined

the maximal zonohedra in E5. In this paper, the method of

Erdahl & RysÏkov is generalized and a combination of zone

contraction and zone extension leads to a general solution.

2. Zone contraction and zone extension

Let E be a 1-face (edge) of a parallelohedron P in Euclidean

space Ed, d � 2. A zone Z of P is de®ned as the set of all

1-faces of P that are parallel to the zone vector t�,

Z � fE � P j E k t�g:
A zone Z is called closed if every 2-face of P contains either

two edges of Z or else none, otherwise it is called open. Let Es

be a shortest edge in a closed zone Zc. By a zone contraction

P#, we understand the process of contracting every edge of Zc

by Es. As a result, the zone becomes open or vanishes

completely but all properties of a parallelohedron, as given by

Venkov (1954) and McMullen (1980), are maintained and,

thus, the polytope resulting from a zone contraction is a

parallelohedron but of a different combinatorial type

compared to the original one. The reverse process P" is called

a zone extension.

A parallelohedron P0 is called totally contracted if all its

zones are open. It is called relatively contracted if any further

contraction leads to a collapse into a parallelohedron of lower

dimension. A parallelohedron Pm is called maximal if it does

not allow any zone extension. Already in dimension d � 6, in

the neighbourhoods of the Gram matrix of the root lattices E6

and E�6 , there exist parallelohedra, even primitive ones, that

are at the same time maximal and totally zone contracted.

Each maximal parallelohedron de®nes a zone-contraction

lattice L�Pm� by contracting all combinations of closed zones

(it is partially ordered by zone contraction, least upper and

greatest lower bounds are de®ned by union and intersection,

respectively, of closed zones). Each relatively or totally zone-

contracted parallelohedron de®nes a zone-contraction family

F�P0� by extending all combinations of extendable zone

vectors. In general, a zone-contraction family is the union of

several zone-contraction lattices which have the same type of

relatively or totally zone-contracted parallelohedron,
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F�P0� �
[

L�Pm�\P0�P0

L�Pm�:

A parallelohedron is zonohedral if all its zones are closed

and if the edges within a zone all have the same length. Then it

is the direct sum of straight line segments, i.e. a special kind of

zonohedron. There exists exactly one zone-contraction family,

de®ned by the relatively contracted hypercube, where all the

members of it are zonohedral parallelohedra. In general, for

non-zonohedral parallelohedra, the number of open zones is

much larger than the number of closed zones.

In Engel (1988), the problem of how to ®nd the maximal

parallelohedra was raised. We have found a complete answer

to that problem: The successive application of both processes,

the zone contraction and the zone extension, allows us, in a

most general way, to ®nd all contraction types of parallelohedra

starting from the combinatorial types of relatively and totally

zone-contracted ones.

3. The cone of positive-definite quadratic forms

A translation lattice

�d � ft j t � m1a1 � . . .�mdad;mi 2 Zg
in Ed de®nes by its basis vectors a1; . . . ; ad a Gram matrix

Q � �qij�, where qij � jaij jajj cos�ij, i � j � 1; . . . ; d. The

Gram matrix Q determines the translation lattice in Ed up to

an isometry. It is a point within the open convex cone C� of

positive-de®nite quadratic forms in R
d�1

2� �. Its closure is

denoted by C � clos�C�� and its boundary by C0 � C n C�. The

functional '�x� � xtQx (xt is the transpose of x) is called a

positive-de®nite d-nary quadratic form.

Following Erdahl & RysÏkov (1994), a family fD1; . . . ;Drg of

r sets of equi-spaced parallel hyperplanes is called a dicing if it

is non-degenerate and vertex transitive. Every dicing corre-

sponds to a zonohedral parallelohedron. Let t�1; . . . ; t�r be the

normal vectors for the r sets of equi-spaced hyperplanes of a

dicing. For zonohedral parallelohedra, it was shown by Erdahl

& RysÏkov that the functional '�x� is given by

'�x� �Pr

i�1

�i�t�i x�2;

where �i > 0. The normal vectors t�i are parallel to the edges of

the zonohedron P�Q�, which is obtained, at the origin of Ed, by

Dirichlet's (1850) famous construction:

P�Q� � fx 2 Ed j '�x� � '�xÿ t�; 8t 2 �dg:
Conversely, P�Q� uniquely determines the lattice �d. An edge

E � P is determined by dÿ 1 facets of P, therefore E is

parallel to a dual lattice vector t� � h1a�1 � . . .� hda�d, hi 2 Z,

which is the outer product of the �dÿ 1� facet vectors, with

dual basis a�1; . . . ; a�d, and Gram matrix Q
ÿ1

, where aia
�
j � �ij.

One can see that, for x 2 Ed, x � x1a1 � . . .� xdad, it holds

that t�x � h1x1 � . . .� hdxd, and �t�x�2 � 0 can formally be

written as xt�t�t�t�x, hence, it is a semi-de®nite quadratic form.

Since det�t�t�t� � 0, it follows that t�t�t is a point in the

boundary C0.

Let '0�x� be the positive-de®nite quadratic form of a totally

zone-contracted parallelohedron P0. For a general parallelo-

hedron Ps in F�P0� with s closed zones Zc;i and zone vectors t�i ,

i � 1; . . . ; s, it holds that

'�x� � '0�x� �
Ps

i�1

�i�t�i x�2;

where �i > 0. Denote by Q and Q0 the Gram matrices of '�x�
and '0�x�, respectively, then

'�x� � x tQx � x tQ0x� x t
hPs

i�1

�it
�
i t�ti

i
x

and the Gram matrix for the translation lattice corresponding

to Ps is given by

Q � Q0 �
Ps

i�1

�it
�
i t�ti ;

where �i > 0, i � 1; . . . ; s. An upper bound for s is given by

s � d�1
2

ÿ �ÿ d0, where d0 is the dimension of the af®ne hull of

the domain of existence of P0. The domain of existence of a

contraction type of parallelohedron P is de®ned as the open

domain of Gram matrices

���P� � fQ 2 C� j P�Q� 'contr
Pg:

The Gram matrices, as functions of �i > 0, Q��1; . . . ; �s�,
de®ne a rational open convex polyhedral cone ��s � C�. Its

extreme quadratic forms are the trivial edge forms t�i t�ti � C0.

Let ��0 be the domain of existence of the totally zone-

contracted parallelohedron P0 of the family of P. The cone ��0
has non-trivial edge forms. The cone of P is the direct sum

���P� � ��0 ���s :

The dimension of the cone �� is given by

k � dim(aff hull ���. Let s be the number of closed zones of

P, then k � d0 � s. A base polytope B is obtained by cutting

the cone with a hyperplane of dimension kÿ 1 such that all its

edge forms are intersected. The base polytope can be used to

classify the cones.

Not all zones of a contracted parallelohedron can be

extended. Let Ps be a parallelohedron with s closed zones and

Gram matrix Q. For some zone vector t�j , the Gram matrix

Q
0 � Q� t�j t�tj is an extension of Q by t�j if

P"s � P�s�1�

and

P#�s�1� � Ps:

For a given zone-contraction family F�P0�, a minimal set

M�P0� of extendable zone vectors t� is obtained by considering

all zone extensions of P0. A zone can be extended by the zone

vector t� 2 M�P0� if P"0 � P1 and P#1 � P0. Because the �i > 0

can be chosen arbitrarily, it is suf®cient to consider for t�

primitive vectors with integral components only. Let H�P0� be

the upper bound for the magnitude of the components of all t�.
Since each t� 2 M�P0� is the outer product of dÿ 1 facets of P,

their components h0i depend on the components m0i of the facet

vectors t. In Engel (1988), the concept of an optimal basis was



introduced that minimizes the components of the facet

vectors. It simultaneously reduces the Gram matrices Q and

Q
ÿ1

such that �opt � tr�Qopt ÿ �2Q
ÿ1
opt�2 is minimal, where

� � �det�Q��1=d,

�opt � min
A2GLd�Z�

tr�AQAt ÿ �2A�Qÿ1
Aÿ1�2:

With respect to an optimal basis, the magnitude of the

components of the zone vectors t� are also minimal and are

small integers for low dimensions. For zonohedra, it holds that

H � 1, which follows from the dicing conditions. For dimen-

sion d � 5, in all cases, with respect to an optimal basis, H � 1

was found to be suf®cient.

In what follows, the cone C is described. The Gram matrix

Q is represented as a point q with components qij in Rd�d.

A basis of Rd�d is given by the eij with eijekl � �ijkl ,

i; j; k; l � 1; . . . ; d. Since Q is symmetric, Q � Q
t
, it follows

that the cone C lies in the subspace de®ned by eij � eji,

i � j � 1; . . . ; d. Each zone vector t� has a representation in

Rd�d by t�t�t � t� � t� (� denotes the tensor product). For

any A 2 GLd�Z�, Q
0 � AQAt

is arithmetically equivalent to

Q. Thus, q0 � At � At
q is arithmetically equivalent to q. If

S 2 GLd�Z� ®xes Q, then S
t � S

t
®xes q. For any vector v�,

l � v� � v� is in C0 since det�v� � v�� � 0. Let c be the

representation of the identity matrix I in Rd�d. Then �c is

the axis of the cone C because for any ray vector l we have

that the cone angle ! becomes

cos! � c � l
j c jj l j �

v2
1 � v2

2 � . . .� v2
d

d1=2�v4
1 � 2v2

1v2
2 � . . .� v4

d�1=2
� 1

d1=2
:

Thus, C is a cone of rotation with rotation axis �c. It is inter-

sected by subspaces of dimensions k�1
2

ÿ �
, k< d. For large

dimensions d, the cone angle ! is close to 90�.
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Table 1
The structure of the k-dimensional cones of the totally contracted
parallelohedra in E5.

Type Gram matrix

k � 1
U24:24 2a 0 ÿ a 0 a = 2a ÿ a 0 a = 2a 0 ÿ a = 0 0 = 2a
40.42 2a ÿ a ÿ a a 0 = 2a 0 ÿ a a = 2a ÿ a 0 = 2a ÿ a = 2a
42.96 3a ÿ a ÿ a a a = 3a ÿ a ÿ a a = 3a ÿ a ÿ a = 2a 0 = 2a
48.180 3a ÿ a ÿ a a a = 4a ÿ a ÿ a 2a = 3a ÿ a ÿ a = 3a ÿ a = 4a
50.192 3a ÿ a ÿ a a a = 3a ÿ a ÿ a a = 3a ÿ a ÿ a = 3a ÿ a = 3a
50.282 5a ÿ a ÿ 2a a 2a = 5a ÿ 2a ÿ a 2a = 5a ÿ a ÿ 2a = 3a ÿ a = 5a
54.342 6a ÿ 2a ÿ 2a 2a 2a = 6a ÿ 2a ÿ 2a 2a = 6a ÿ 2a ÿ 2a = 5aÿ a = 5a
54.366±2 4a ÿ 2a ÿ a 2a a = 6a ÿ a ÿ 2a 3a = 4a ÿ 2a ÿ a = 6a ÿ 2a = 6a

Type �kÿ 1� subordinations

k � 2
40.122 U24:24, 40.42
42.132±1 U24:24, 42.96
42.132±2 U24:24, UI

24:24

48.188 40.42, 48.180
48.202 40.42, 42.96
48.246 U24:24, 48.180
50.232 40.42, 50.192
50.280 48.180, 50.192
50.298 40.42, 50.282
50.304 48.180, 50.282
50.312±1 U24:24, 50.282
50.330 50.192, 50.282
52.308 42.96, 48.180
54.364 50.192, 54.342
54.366±1 40.42, 54.342
54.374 48.180, 54.366±2
54.376±1 42.96, 54.342
54.376±2 42.96, 50.282
54.386 48.180, 54.342
54.388±2 50.282, 54.342
54.402±1 UI

24:24, 54.366±2
k � 3
42.168 42.132±1, 42.132±1I, 42.132±2
48.242±1 40.122, 40.122I, 42.132±2
48.242±2 40.122, 42.132±1, 48.202
48.254 40.122, 48.188, 48.246
50.288 48.188, 50.232, 50.280
50.312±2 48.188, 50.298, 50.304
50.328 40.122, 50.298, 50.312±1
50.334 48.246, 50.304, 50.312±1
50.346 50.232, 50.298, 50.330
50.352 50.280, 50.304, 50.330
52.316 48.188, 48.202, 52.308
52.344 42.132±2, 48.246, 48.246I

52.346 42.132±1, 48.246, 52.308
54.382 48.188, 48.188I, 54.374, 54.374I

54.388±1 50.232, 54.364, 54.366±1
54.392 48.202, 50.298, 54.376±2
54.394 48.188, 54.366±1, 54.386
54.398 50.304, 52.308, 54.376±2
54.400 48.202, 54.366±1, 54.376±1
54.402±2 42.132±1, 50.312±1, 54.376±2
54.404 50.298, 54.366±1, 54.388±2
54.408 50.280, 54.364, 54.386
54.410±1 48.246, 54.374, 54.402±1
54.410±2 50.304, 54.386, 54.388±2
54.410±3 50.330, 54.364, 54.388±2
54.420 52.308, 54.376±1, 54.386
54.422 54.376±1, 54.376±2, 54.388±2
56.462 42.132±2, 54.402±1, 54.402±1I

k � 4
42.204 42.168, 42.168I, . . . , 42.168V

48.282 42.168, 48.242±1, 48.242±2, 48.242±2I

50.342 48.254, 50.312±2, 50.328, 50.334
50.360 50.288, 50.312±2, 50.346, 50.352
52.352 48.242±1, 48.254, 48.254I, 52.344

Table 1 (continued)

Type �kÿ 1� subordinations

52.354 48.242±2, 48.254, 52.316, 52.346
52.384 42.168, 52.344, 52.346, 52.346I

54.406 50.312±2, 52.316, 54.392, 54.398
54.416 50.288, 54.388±1, 54.394, 54.408
54.418±1 48.254, 48.254I, 54.410±1, 54.410±1I, 54.382
54.418±2 48.242±2, 50.328, 54.392, 54.402±2
54.418±3 50.312±2, 54.394, 54.404, 54.410±2
54.424 50.334, 52.346, 54.398, 54.402±2
54.426 50.346, 54.388±1, 54.404, 54.410±3
54.428 52.316, 54.398, 54.400, 54.420
54.432±2 50.352, 54.408, 54.410±2, 54.410±3
54.438 54.392, 54.400, 54.404, 54.422
54.444 54.398, 54.410±2, 54.420, 54.422
56.470 52.344, 54.410±1, 54.410±1I, 56.462
k � 5
42.240 42.204, 42.204I, . . ., 42.204IX

48.322 42.204, 48.282, 48.282I, . . ., 48.282V

52.392 48.282, 52.352, 52.354, 52.354I, 52.382
54.432±1 50.342, 52.354, 54.406, 54.418±2, 54.424
54.440 50.360, 54.416, 54.418±3, 54.426, 54.432±2
54.452 54.406, 54.418±3, 54.428, 54.438, 54.444
56.478 52.352, 52.352I, 54.418±1, 54.418±1I, 56.470, 56.470I
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Table 2
The numbers of contraction types of parallelohedra in E5.

Family 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

10.32 ± ± ± ± ± 1 4 8 13 16 17 (1) 11 7 (2) 2 1 1 (1) 81 (4)
26.48 ± 1 2 6 14 27 50 74 87 78 55 (1) 22 (1) 7 (2) 1 (1) 424 (5)
40.42 1 2 4 8 17 33 60 82 91 75 47 (2) 17 5 (5) 442 (7)
40.122 1 4 13 34 81 169 291 376 369 255 123 (3) 33 (3) 6 (6) 1755 (12)
42.96 1 2 6 16 35 66 110 144 154 121 78 (3) 30 11 (4) 2 1 (1) 777 (8)
42.132±1 1 4 13 39 90 178 294 379 375 268 136 (4) 39 (4) 8 (3) 1 (1) 1825 (12)
42.132±2 1 3 9 25 55 104 169 215 215 154 84 (4) 25 (2) 7 (3) 1 (1) 1067 (10)
42.168 1 5 18 51 117 229 364 447 415 261 112 (10) 23 (5) 4 (4) 2047 (19)
42.204 1 3 9 23 47 84 126 144 125 70 29 (8) 4 (4) 665 (12)
42.240 1 1 2 5 9 13 19 19 16 8 7 (7) 100 (7)
48.180 1 4 12 33 77 145 216 255 230 155 76 (4) 25 (1) 6 (3) 1 (1) 1236 (9)
48.188 1 5 17 51 127 247 375 438 383 243 105 (7) 27 4 (4) 2023 (11)
48.202 1 4 15 47 122 259 421 516 469 309 143 (7) 40 7 (7) 2353 (14)
48.242±1 1 5 21 66 169 347 537 615 519 301 117 (12) 22 (5) 4 (4) 2724 (21)
48.242±2 1 7 31 104 276 594 953 1126 957 560 210 (13) 42 (13) 4 (4) 4865 (30)
48.246 1 6 24 76 189 364 533 592 483 277 103 (7) 19 (11) 1 (1) 2668 (19)
48.254 1 8 37 128 336 662 978 1073 849 458 149 (13) 20 (20) 4699 (33)
48.282 1 7 32 106 277 574 858 925 705 355 103 (26) 10 (10) 3953 (36)
48.322 1 3 9 22 51 97 143 148 108 49 15 (15) 646 (15)
50.192 1 1 2 5 9 14 20 22 20 15 9 (1) 3 (2) 1 (1) 122 (4)
50.232 1 2 5 13 28 48 68 76 63 38 16 (2) 3 (3) 361 (5)
50.280 1 3 9 24 54 94 130 139 111 63 25 (4) 6 (4) 1 (1) 660 (9)
50.282 1 3 9 26 56 95 129 133 100 55 20 (6) 3 (3) 630 (9)
50.288 1 4 13 38 90 162 226 237 181 94 30 (7) 4 (4) 1080 (11)
50.298 1 5 18 54 127 230 317 323 232 111 31 (15) 3 (3) 1452 (18)
50.304 1 5 19 57 133 235 312 308 216 101 27 (17) 2 (2) 1416 (19)
50.312±1 1 3 9 26 56 95 129 133 100 55 20 (6) 3 (3) 630 (9)
50.312±2 1 7 30 98 237 425 568 550 369 158 32 (32) 2475 (32)
50.328 1 5 18 54 127 230 317 323 232 111 31 (15) 3 (3) 1452 (18)
50.330 1 3 9 26 56 95 129 133 100 55 20 (6) 3 (3) 630 (9)
50.334 1 5 19 57 133 235 312 308 216 101 27 (17) 2 (2) 1416 (19)
50.342 1 7 30 98 237 425 568 551 370 158 33 (33) 2478 (33)
50.346 1 5 18 54 127 230 317 323 232 111 31 (15) 3 (3) 1452 (18)
50.352 1 5 19 57 133 235 312 308 216 101 27 (17) 2 (2) 1416 (19)
50.360 1 7 30 98 237 425 568 550 369 158 32 (32) 2475 (32)
52.308 1 6 25 79 198 392 583 655 546 334 146 (13) 43 (2) 9 (5) 1 (1) 3018 (21)
52.316 1 8 39 138 366 727 1074 1181 954 550 216 (23) 53 8 (8) 5315 (31)
52.344 1 6 26 83 202 376 526 553 423 225 77 (14) 13 (8) 1 (1) 2512 (23)
52.346 1 8 39 136 349 665 940 985 745 388 127 (20) 20 (12) 1 (1) 4404 (33)
52.352 1 8 40 140 357 677 950 984 718 352 98 (24) 10 (10) 4335 (34)
52.354 1 11 63 239 639 1238 1755 1812 1323 643 183 (40) 20 (20) 7927 (60)
52.384 1 6 24 73 174 326 442 438 306 143 40 (26) 4 (4) 1977 (30)
52.392 1 8 37 122 308 588 799 773 514 214 44 (44) 3408 (44)
54.342 1 2 7 18 40 67 94 102 84 52 24 (3) 6 (4) 1 (1) 498 (8)
54.364 1 2 7 18 40 67 94 102 84 52 24 (3) 6 (4) 1 (1) 498 (8)
54.366±1 1 4 15 45 110 203 289 307 235 126 43 (7) 7 (7) 1385 (14)
54.366±2 1 3 8 21 41 63 80 76 56 29 13 (7) 2 1 (1) 394 (8)
54.374 1 5 17 46 96 156 192 180 123 57 17 (10) 2 (2) 892 (12)
54.376±1 1 2 7 18 40 67 94 102 84 52 24 (3) 6 (4) 1 (1) 498 (8)
54.376±2 1 4 15 46 106 185 250 254 186 97 32 (10) 4 (4) 1180 (14)
54.382 1 5 17 46 97 156 192 176 118 51 15 (15) 874 (15)
54.386 1 5 21 62 152 282 394 404 300 156 52 (13) 10 (7) 1 (1) 1840 (21)
54.388±1 1 4 15 45 110 203 289 307 235 126 43 (7) 7 (7) 1385 (14)
54.388±2 1 4 15 46 106 185 250 254 186 97 32 (10) 4 (4) 1180 (14)
54.392 1 7 31 102 252 465 638 638 446 204 52 (27) 4 (4) 2840 (31)
54.394 1 7 33 110 278 520 717 718 510 242 64 (21) 7 (7) 3207 (28)
54.398 1 7 33 109 266 477 632 613 419 189 47 (30) 3 (3) 2796 (33)
54.400 1 4 15 45 110 203 289 307 235 126 43 (7) 7 (7) 1385 (14)
54.402±1 1 4 14 41 88 145 187 179 129 64 24 (13) 3 1 (1) 880 (14)
54.402±2 1 4 15 46 106 185 250 254 186 97 32 (10) 4 (4) 1180 (14)
54.404 1 7 31 102 252 465 637 638 446 204 52 (27) 4 (4) 2839 (31)
54.406 1 10 54 193 486 881 1169 1115 729 299 56 (56) 4993 (56)
54.408 1 5 21 62 152 282 394 404 300 156 52 (13) 10 (7) 1 (1) 1840 (21)
54.410±1 1 7 31 97 221 378 481 454 307 139 37 (23) 3 (3) 2156 (26)
54.410±2 1 7 33 109 265 473 627 610 416 189 47 (30) 3 (3) 2780 (33)
54.410±3 1 4 15 46 106 185 250 254 186 97 32 (10) 4 (4) 1180 (14)
54.416 1 7 33 110 278 520 717 718 509 242 64 (21) 7 (7) 3206 (28)
54.418±1 1 7 31 97 222 377 477 441 292 124 31 (31) 2100 (31)
54.418±2 1 7 31 102 250 464 638 638 446 204 52 (27) 4 (4) 2837 (31)
54.418±3 1 10 54 192 483 869 1160 1104 722 291 50 (50) 4936 (50)
54.420 1 5 21 62 152 282 394 404 300 156 52 (13) 10 (7) 1 (1) 1840 (21)



4. The classification into contraction types

The hierarchical structure of the k-faces of P is used to classify

the parallelohedra. The k-faces, 0 � k � d, together with the

empty set, determine a face lattice L�P� by inclusion. Two

polytopes P and P0 are called combinatorially equivalent,

P0 'comb
P if there exists an isomorphism � : L�P� ! L�P0�. In

order to verify the combinatorial equivalence, the k-subordi-

nation symbol n1 f1n2 f2 . . . nr fr, with f1 < f2 < . . . < fr, was

used, where each ni, i � 1; . . . ; r, gives the number of those

k-faces that have subordinated fi �kÿ 1�-faces. As subordi-

nation scheme we denote the concatenation of the k-subor-

dination symbols for k � �dÿ 1�; . . . ; 2.

Such a classi®cation is suf®cient for parallelohedra in

dimensions d< 5 but, beginning with dimension d � 5, a ®ner

classi®cation into contraction types is required because edges

of various length may be arranged in different ways within a

closed zone. Therefore, parallelohedra of the same combina-

torial type may show different behaviour under zone

contractions.

Two polytopes P and P0 are called af®nely equivalent,

P0 'aff
P if there exists an af®ne mapping ' : P0 � 'P. Paral-

lelohedra of the same af®ne type must have isomorphic zone-

contraction lattices. The distinct contraction lattices are used

to classify the parallelohedra into contraction types. For a

parallelohedron Ps with s closed zones, all its directly

subordinated zone-contracted parallelohedra P�sÿ1�;i � P#�i�s ,

i � 1; . . . ; s, are determined, and their subordination schemes

are ordered lexicographically. As contraction scheme, we

denote the concatenation of the different subordination

schemes in their lexicographic order. We say that two paral-

lelohedra P and P0 are of the same contraction type, P0 'contr
P if

(i) they have identical subordination schemes; (ii) they have

identical contraction schemes; (iii) they belong to the same

zone-contraction family.

5. Results

The combinatorial types of relatively and totally zone-

contracted parallelohedra are crucial in the derivation of the

contraction types of parallelohedra. In E5, there exist 2 rela-

tively and 82 totally zone-contracted combinatorial types of

parallelohedra, which have been described in detail in Engel

(1998). Most of them were found by contracting the 1620

contraction types of maximal parallelohedra already known

and the ®nal list was obtained by carefully investigating their

polyhedral cones in C. We have again veri®ed this list by

extending all combinatorial types of totally zone-contracted

parallelohedra by zone vectors t� having components

hi 2 fÿ1; 0; 1g, followed by successive zone contractions in

order to obtain a totally zone-contracted parallelohedron

again. By this, the completeness of that list was con®rmed. The

combinatorial types of relatively or totally zone-contracted

parallelohedra are denoted by the symbol N�dÿ1�:N0, where

N�dÿ1� and N0 give the numbers of facets and vertices,

respectively. In cases where distinct types have the same

numbers N�dÿ1� and N0, the symbol is completed by an order

number. In Table 1, the structures of the polyhedral cones ��0
for the combinatorial types of totally zone-contracted paral-

lelohedra are described. In E5, there exist seven types of cones

having maximal dimension k � 5. Most of them are simplicial

or have few facets. An exception is the cone of 42.240, which

was given in Engel (1998) by a representative Gram matrix of

the root lattice D�5. It was realized from its complete zone-

contraction family that the cone ��0 �42:240� has dimension

k � 5. It is bounded by 10 cones ��0 �42:204� of dimension

k � 4, 30 cones ��0 �42:168� of dimension k � 3, 30 cones

��0 �42:132ÿ 1� and ��0 �42:132ÿ 2�, respectively, of dimen-

sion k � 2, and has 10 extreme edge forms ��0 �42:96� and

��0 �U24:24�, respectively. The type U24:24 is the unique totally

zone-contracted parallelohedron in E4, corresponding to the

four-dimensional root lattice F4. It is contained in a subspace

U of dimension ten that intersects the cone C. The base

polytope of the cone ��0 �42:240� is of combinatorial type 10.10

and has a group of combinatorial automorphisms of order 120.

The base polyhedron of the subcone ��0 �42:204� is a trigonal

bypyramid. For each one-dimensional edge form, a repre-

sentative Gram matrix is given in Table 1.

For each combinatorial type of relatively or totally zone-

contracted parallelohedron P0, we have calculated its zone-

contraction family F�P0� by considering all combinations of

extensions by zone vectors from its minimal set M�P0� of
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Table 2 (continued)

Family 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

54.422 1 4 15 46 106 185 250 254 186 97 32 (10) 4 (4) 1180 (14)
54.424 1 7 33 109 266 477 632 613 419 189 47 (30) 3 (3) 2796 (33)
54.426 1 7 31 102 252 465 637 638 446 204 52 (27) 4 (4) 2839 (31)
54.428 1 7 33 111 280 523 720 723 513 246 68 (23) 8 (8) 3233 (31)
54.432±1 1 10 54 194 486 885 1175 1115 730 300 60 (60) 5010 (60)
54.432±2 1 7 33 109 265 473 627 610 416 189 47 (30) 3 (3) 2780 (33)
54.438 1 7 31 102 252 465 637 638 446 204 52 (27) 4 (4) 2839 (31)
54.440 1 10 54 192 483 869 1160 1104 722 291 50 (50) 4936 (50)
54.444 1 7 33 109 265 473 627 610 416 189 47 (30) 3 (3) 2780 (33)
54.452 1 10 54 192 483 869 1160 1104 722 293 55 (55) 4943 (55)
56.462 1 4 14 4 1 88 145 187 179 129 64 24 (13) 3 1 (1) 880 (14)
56.470 1 7 31 96 218 372 470 443 296 135 34 (20) 3 (3) 2106 (23)
56.478 1 7 31 96 218 369 463 432 278 118 27 (27) 2040 (27)
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extendable zone vectors. By this, all 1871 contraction types of

maximal parallelohedra were found in a systematic way. In

Table 2, the numbers of contraction types of parallelohedra for

each zone-contraction family with respect to the numbers of

closed zones are given, the numbers of maximal parallelo-

hedra Pm of which are shown in parentheses. The zone-

contraction families are denoted by the symbols of their

combinatorial types of relatively or totally zone-contracted

parallelohedra, The symbols 10.32 and 26.48 denote the two

combinatorial types of relatively zone-contracted parallelo-

hedra. The zone-contraction family 10.32 contains all the

contraction types of zonohedral parallelohedra in E5 (they

coincide with the combinatorial types).

As a ®nal result, we obtained: In E5, there exist 179372

contraction types of parallelohedra, of which 1871 are maximal.

They belong to 84 different zone-contraction families. The

number of contraction types of primitive parallelohedra is 792,

of which 590 are principal primitive having the maximal

number of vertices given by �d� 1�!. The number of combi-

natorial types of parallelohedra is 103769. The number of

combinatorial types of primitive parallelohedra is 222, of which

201 are principal primitive.
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